Skip to main content

Advertisement

Log in

Inhibition of 2-Arachidonoylglycerol Metabolism Alleviates Neuropathology and Improves Cognitive Function in a Tau Mouse Model of Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common cause of dementia, which affects more than 5 million individuals in the USA. Unfortunately, no effective therapies are currently available to prevent development of AD or to halt progression of the disease. It has been proposed that monoacylglycerol lipase (MAGL), the key enzyme degrading the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain, is a therapeutic target for AD based on the studies using the APP transgenic models of AD. While inhibition of 2-AG metabolism mitigates β-amyloid (Aβ) neuropathology, it is still not clear whether inactivation of MAGL alleviates tauopathies as accumulation and deposition of intracellular hyperphosphorylated tau protein are the neuropathological hallmark of AD. Here we show that JZL184, a potent MAGL inhibitor, significantly reduced proinflammatory cytokines, astrogliosis, phosphorylated GSK3β and tau, cleaved caspase-3, and phosphorylated NF-kB while it elevated PPARγ in P301S/PS19 mice, a tau mouse model of AD. Importantly, tau transgenic mice treated with JZL184 displayed improvements in spatial learning and memory retention. In addition, inactivation of MAGL ameliorates deteriorations in expression of synaptic proteins in P301S/PS19 mice. Our results provide further evidence that MAGL is a promising therapeutic target for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data supporting the findings of this manuscript are available from the corresponding authors upon request.

Code Availability

Not applicable.

References

  1. Sugiura T, Kishimoto S, Oka S, Gokoh M (2006) Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog Lipid Res 45:405–446. https://doi.org/10.1016/j.plipres.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  2. Chen X, Zhang J, Chen C (2011) Endocannabinoid 2-arachidonoylglycerol protects neurons against beta-amyloid insults. Neuroscience 178:159–168. https://doi.org/10.1016/j.neuroscience.2011.01.024

    Article  CAS  PubMed  Google Scholar 

  3. Du H, Chen X, Zhang J, Chen C (2011) Inhibition of COX-2 expression by endocannabinoid 2-arachidonoylglycerol is mediated via PPAR-gamma. Br J Pharmacol 163:1533–1549. https://doi.org/10.1111/j.1476-5381.2011.01444.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang J, Chen C (2008) Endocannabinoid 2-arachidonoylglycerol protects neurons by limiting COX-2 elevation. J Biol Chem 283:22601–22611. https://doi.org/10.1074/jbc.M800524200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Panikashvili D, Simeonidou C, Ben-Shabat S, Hanus L, Breuer A, Mechoulam R, Shohami E (2001) An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413:527–531. https://doi.org/10.1038/35097089

    Article  CAS  PubMed  Google Scholar 

  6. Xu JY, Chen C (2015) Endocannabinoids in synaptic plasticity and neuroprotection. Neuroscientist 21:152–168. https://doi.org/10.1177/1073858414524632

    Article  CAS  PubMed  Google Scholar 

  7. Hermanson DJ, Gamble-George JC, Marnett LJ, Patel S (2014) Substrate-selective COX-2 inhibition as a novel strategy for therapeutic endocannabinoid augmentation. Trends Pharmacol Sci 35:358–367. https://doi.org/10.1016/j.tips.2014.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blankman JL, Simon GM, Cravatt BF (2007) A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol 14:1347–1356. https://doi.org/10.1016/j.chembiol.2007.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nomura DK, Morrison BE, Blankman JL, Long JZ, Kinsey SG, Marcondes MC, Ward AM, Hahn YK et al (2011) Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 334:809–813. https://doi.org/10.1126/science.1209200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Viader A, Blankman JL, Zhong P, Liu X, Schlosburg JE, Joslyn CM, Liu QS, Tomarchio AJ et al (2015) Metabolic interplay between astrocytes and neurons regulates endocannabinoid action. Cell Rep 12:798–808. https://doi.org/10.1016/j.celrep.2015.06.075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Viader A, Ogasawara D, Joslyn CM, Sanchez-Alavez M, Mori S, Nguyen W, Conti B, Cravatt BF (2016) A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation. Elife 5:e12345. https://doi.org/10.7554/eLife.12345

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hein AM, O’Banion MK (2009) Neuroinflammation and memory: the role of prostaglandins. Mol Neurobiol 40:15–32. https://doi.org/10.1007/s12035-009-8066-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Salmon JA, Higgs GA (1987) Prostaglandins and leukotrienes as inflammatory mediators. Br Med Bull 43:285–296

    Article  CAS  Google Scholar 

  14. Shohami E, Cohen-Yeshurun A, Magid L, Algali M, Mechoulam R (2011) Endocannabinoids and traumatic brain injury. Br J Pharmacol 163:1402–1410. https://doi.org/10.1111/j.1476-5381.2011.01343.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen R, Zhang J, Wu Y, Wang D, Feng G, Tang YP, Teng Z, Chen C (2012) Monoacylglycerol lipase is a therapeutic target for Alzheimer’s disease. Cell Rep 2:1329–1339. https://doi.org/10.1016/j.celrep.2012.09.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen C (2016) Endocannabinoid metabolism in neurodegenerative diseases. Neuroimmunol Neuroinflamm 3:268–270. https://doi.org/10.20517/2347-8659.2016.46

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen C (2015) Homeostatic regulation of brain functions by endocannabinoid signaling. Neural Regen Res 10:691–692. https://doi.org/10.4103/1673-5374.156947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Piro JR, Benjamin DI, Duerr JM, Pi Y, Gonzales C, Wood KM, Schwartz JW, Nomura DK et al (2012) A dysregulated endocannabinoid-eicosanoid network supports pathogenesis in a mouse model of Alzheimer’s disease. Cell Rep 1:617–623. https://doi.org/10.1016/j.celrep.2012.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pihlaja R, Takkinen J, Eskola O, Vasara J, Lopez-Picon FR, Haaparanta-Solin M, Rinne JO (2015) Monoacylglycerol lipase inhibitor JZL184 reduces neuroinflammatory response in APdE9 mice and in adult mouse glial cells. J Neuroinflammation 12:81. https://doi.org/10.1186/s12974-015-0305-9

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang J, Hu M, Teng Z, Tang YP, Chen C (2014) Synaptic and cognitive improvements by inhibition of 2-AG metabolism are through upregulation of microRNA-188-3p in a mouse model of Alzheimer’s disease. J Neurosci 34:14919–14933. https://doi.org/10.1523/jneurosci.1165-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bloom GS (2014) Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71:505–508. https://doi.org/10.1001/jamaneurol.2013.5847

    Article  PubMed  Google Scholar 

  22. Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A (2002) Tau is essential to beta-amyloid-induced neurotoxicity. Proc Natl Acad Sci U S A 99:6364–6369. https://doi.org/10.1073/pnas.092136199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351. https://doi.org/10.1016/j.neuron.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  24. Takashima A (2006) GSK-3 is essential in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 9:309–317. https://doi.org/10.3233/jad-2006-9s335

    Article  CAS  PubMed  Google Scholar 

  25. Turab Naqvi AA, Hasan GM, Hassan MI (2020) Targeting tau hyperphosphorylation via kinase inhibition: strategy to address Alzheimer’s disease. Curr Top Med Chem 20:1059–1073. https://doi.org/10.2174/1568026620666200106125910

    Article  CAS  PubMed  Google Scholar 

  26. Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402:615–622. https://doi.org/10.1038/45159

    Article  CAS  PubMed  Google Scholar 

  27. Kimura T, Ishiguro K, Hisanaga S (2014) Physiological and pathological phosphorylation of tau by Cdk5. Front Mol Neurosci 7:65. https://doi.org/10.3389/fnmol.2014.00065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bensinger SJ, Tontonoz P (2008) Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454:470–477. https://doi.org/10.1038/nature07202

    Article  CAS  PubMed  Google Scholar 

  29. Villapol S (2018) Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell Mol Neurobiol 38:121–132. https://doi.org/10.1007/s10571-017-0554-5

    Article  CAS  PubMed  Google Scholar 

  30. Ju Hwang C, Choi DY, Park MH, Hong JT (2019) NF-κB as a key mediator of brain inflammation in Alzheimer’s disease. CNS Neurol Disord Drug Targets 18:3–10. https://doi.org/10.2174/1871527316666170807130011

    Article  CAS  PubMed  Google Scholar 

  31. Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G (2017) Neuroinflammation pathways: a general review. Int J Neurosci 127:624–633. https://doi.org/10.1080/00207454.2016.1212854

    Article  CAS  PubMed  Google Scholar 

  32. Bamberger ME, Landreth GE (2002) Inflammation, apoptosis, and Alzheimer’s disease. Neuroscientist 8:276–283. https://doi.org/10.1177/1073858402008003013

    Article  CAS  PubMed  Google Scholar 

  33. Behl C (2000) Apoptosis and Alzheimer’s disease. J Neural Transm (Vienna) 107:1325–1344. https://doi.org/10.1007/s007020070021

    Article  CAS  Google Scholar 

  34. Shimohama S (2000) Apoptosis in Alzheimer’s disease–an update. Apoptosis 5:9–16. https://doi.org/10.1023/a:1009625323388

    Article  CAS  PubMed  Google Scholar 

  35. Alani B, Salehi R, Sadeghi P, Khodagholi F, Digaleh H, Jabbarzadeh-Tabrizi S, Zare M, Korbekandi H (2015) Silencing of Hsp70 intensifies 6-OHDA-induced apoptosis and Hsp90 upregulation in PC12 cells. J Mol Neurosci 55:174–183. https://doi.org/10.1007/s12031-014-0298-3

    Article  CAS  PubMed  Google Scholar 

  36. Alani B, Salehi R, Sadeghi P, Zare M, Khodagholi F, Arefian E, Hakemi MG, Digaleh H (2014) Silencing of Hsp90 chaperone expression protects against 6-hydroxydopamine toxicity in PC12 cells. J Mol Neurosci 52:392–402. https://doi.org/10.1007/s12031-013-0163-9

    Article  CAS  PubMed  Google Scholar 

  37. Zhang YH, Wang DW, Xu SF, Zhang S, Fan YG, Yang YY, Guo SQ, Wang S et al (2018) α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biol 14:535–548. https://doi.org/10.1016/j.redox.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J, Chen C (2018) Alleviation of neuropathology by inhibition of monoacylglycerol lipase in APP transgenic mice lacking CB2 receptors. Mol Neurobiol 55:4802–4810. https://doi.org/10.1007/s12035-017-0689-x

    Article  CAS  PubMed  Google Scholar 

  39. Chen R, Zhang J, Fan N, Teng ZQ, Wu Y, Yang H, Tang YP, Sun H et al (2013) Delta9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling. Cell 155:1154–1165. https://doi.org/10.1016/j.cell.2013.10.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Song Y, Hu M, Zhang J, Teng ZQ, Chen C (2019) A novel mechanism of synaptic and cognitive impairments mediated via microRNA-30b in Alzheimer’s disease. E Bio Medicine 39:409–421. https://doi.org/10.1016/j.ebiom.2018.11.059

    Article  Google Scholar 

  41. Zhang J, Teng Z, Song Y, Hu M, Chen C (2015) Inhibition of monoacylglycerol lipase prevents chronic traumatic encephalopathy-like neuropathology in a mouse model of repetitive mild closed head injury. J Cereb Blood Flow Metab 35:443–453. https://doi.org/10.1038/jcbfm.2014.216

    Article  CAS  PubMed  Google Scholar 

  42. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791. https://doi.org/10.1126/science.1074069

    Article  CAS  PubMed  Google Scholar 

  43. Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, Schlosburg JE, Pavon FJ, Serrano AM et al (2009) Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol 5:37–44. https://doi.org/10.1038/nchembio.129

    Article  CAS  PubMed  Google Scholar 

  44. Long JZ, Nomura DK, Cravatt BF (2009) Characterization of monoacylglycerol lipase inhibition reveals differences in central and peripheral endocannabinoid metabolism. Chem Biol 16:744–753. https://doi.org/10.1016/j.chembiol.2009.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Song Y, Zhang J, Chen C (2015) Fine-tuning of synaptic upscaling at excitatory synapses by endocannabinoid signaling is mediated via the CB1 receptor. Sci Rep 5:16257. https://doi.org/10.1038/srep16257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Katona I, Freund TF (2008) Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 14:923–930. https://doi.org/10.1038/nm.f.1869

    Article  CAS  PubMed  Google Scholar 

  47. Heifets BD, Castillo PE (2009) Endocannabinoid signaling and long-term synaptic plasticity. Annu Rev Physiol 71:283–306. https://doi.org/10.1146/annurev.physiol.010908.163149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Crimins JL, Rocher AB, Peters A, Shultz P, Lewis J, Luebke JI (2011) Homeostatic responses by surviving cortical pyramidal cells in neurodegenerative tauopathy. Acta Neuropathol 122:551–564. https://doi.org/10.1007/s00401-011-0877-0

    Article  PubMed  Google Scholar 

  49. Pan B, Wang W, Zhong P, Blankman JL, Cravatt BF, Liu QS (2011) Alterations of endocannabinoid signaling, synaptic plasticity, learning, and memory in monoacylglycerol lipase knock-out mice. J Neurosci 31:13420–13430. https://doi.org/10.1523/jneurosci.2075-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang Z, Wang W, Zhong P, Liu SJ, Long JZ, Zhao L, Gao HQ, Cravatt BF, Liu QS et al (2015) Blockade of 2-arachidonoylglycerol hydrolysis produces antidepressant-like effects and enhances adult hippocampal neurogenesis and synaptic plasticity. Hippocampus 25:16–26. https://doi.org/10.1002/hipo.22344

    Article  CAS  PubMed  Google Scholar 

  51. Fowler CJ (2012) Monoacylglycerol lipase-a target for drug development? Br J Pharmacol 166:1568–1585. https://doi.org/10.1111/j.1476-5381.2012.01950.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gil-Ordonez A, Martin-Fontecha M, Ortega-Gutierrez S, Lopez-Rodriguez ML (2018) Monoacylglycerol lipase (MAGL) as a promising therapeutic target. Biochem Pharmacol 157:18–32. https://doi.org/10.1016/j.bcp.2018.07.036

    Article  CAS  PubMed  Google Scholar 

  53. Grabner GF, Zimmermann R, Schicho R, Taschler U (2017) Monoglyceride lipase as a drug target: at the crossroads of arachidonic acid metabolism and endocannabinoid signaling. Pharmacol Ther 175:35–46. https://doi.org/10.1016/j.pharmthera.2017.02.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mulvihill MM, Nomura DK (2013) Therapeutic potential of monoacylglycerol lipase inhibitors. Life Sci 92:492–497. https://doi.org/10.1016/j.lfs.2012.10.025

    Article  CAS  PubMed  Google Scholar 

  55. Panikashvili D, Mechoulam R, Beni SM, Alexandrovich A, Shohami E (2005) CB1 cannabinoid receptors are involved in neuroprotection via NF-kappa B inhibition. J Cereb Blood Flow Metab 25:477–484. https://doi.org/10.1038/sj.jcbfm.9600047

    Article  CAS  PubMed  Google Scholar 

  56. Dou F, Netzer WJ, Tanemura K, Li F, Hartl FU, Takashima A, Gouras GK, Greengard P et al (2003) Chaperones increase association of tau protein with microtubules. Proc Natl AcadSci U S A 100:721–726. https://doi.org/10.1073/pnas.242720499

    Article  CAS  Google Scholar 

  57. Woo JA, Liu T, Zhao X, Trotter C, Yrigoin K, Cazzaro S, Narvaez E, Khan H et al (2017) Enhanced tau pathology via RanBP9 and Hsp90/Hsc70 chaperone complexes. Hum Mol Genet 26:3973–3988. https://doi.org/10.1093/hmg/ddx284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abisambra J, Jinwal UK, Miyata Y, Rogers J, Blair L, Li X, Seguin SP, Wang L et al (2013) Allosteric heat shock protein 70 inhibitors rapidly rescue synaptic plasticity deficits by reducing aberrant tau. Biol Psychiatry 74:367–374. https://doi.org/10.1016/j.biopsych.2013.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Luo W, Dou F, Rodina A, Chip S, Kim J, Zhao Q, Moulick K, Aguirre J et al (2007) Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc Natl Acad Sci U S A 104:9511–9516. https://doi.org/10.1073/pnas.0701055104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wölfing H, Chieng BC et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142:387–397. https://doi.org/10.1016/j.cell.2010.06.036

    Article  CAS  PubMed  Google Scholar 

  61. Shipton OA, Leitz JR, Dworzak J, Acton CE, Tunbridge EM, Denk F, Dawson HN, Vitek MP et al (2011) Tau protein is required for amyloid {beta}-induced impairment of hippocampal long-term potentiation. J Neurosci 31:1688–1692. https://doi.org/10.1523/jneurosci.2610-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, Freret T (2013) Object recognition test in mice. Nat Protoc 8:2531–2537. https://doi.org/10.1038/nprot.2013.155

    Article  CAS  PubMed  Google Scholar 

  63. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110. https://doi.org/10.1007/s10339-011-0430-z

    Article  CAS  PubMed  Google Scholar 

  64. Botton PH, Costa MS, Ardais AP, Mioranzza S, Souza DO, da Rocha JB, Porciúncula LO (2010) Caffeine prevents disruption of memory consolidation in the inhibitory avoidance and novel object recognition tasks by scopolamine in adult mice. Behav Brain Res 214:254–259. https://doi.org/10.1016/j.bbr.2010.05.034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors also thank NIH Mental Health Institute Chemical Synthesis and Drug Supply Program for providing JZL184.

Funding

This work was supported by National Institutes of Health grants R01NS076815, R01MH113535, and R01AG058621 (to C.C.) and by startup funds from UT Health San Antonio, Joe R. & Teresa Lozano Long School of Medicine (to C.C.).

Author information

Authors and Affiliations

Authors

Contributions

C.C. conceived the project and designed the experiments; J.H., M.H., J.Z., F.G., and C.C. performed the experiments and analyzed the data; C.C. supervised the work and wrote the manuscript.

Corresponding author

Correspondence to Chu Chen.

Ethics declarations

Ethics Approval

All the animal experiments were performed in compliance with the US Department of Health and Human Services Guide for the Care and Use of Laboratory Animals. The care and use of the animals reported in this study were approved by the Institutional Animal Care and Use Committee of University of Texas Health San Antonio.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashem, J., Hu, M., Zhang, J. et al. Inhibition of 2-Arachidonoylglycerol Metabolism Alleviates Neuropathology and Improves Cognitive Function in a Tau Mouse Model of Alzheimer’s Disease. Mol Neurobiol 58, 4122–4133 (2021). https://doi.org/10.1007/s12035-021-02400-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02400-2

Keywords

Navigation