Skip to main content
Log in

The Primary Ciliary Deficits in Cerebellar Bergmann Glia of the Mouse Model of Fragile X Syndrome

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Primary cilia are non-motile cilia that function as antennae for cells to sense signals. Deficits of primary cilia cause ciliopathies, leading to the pathogenesis of various developmental disorders; however, the contribution of primary cilia to neurodevelopmental disorders is largely unknown. Fragile X syndrome (FXS) is a genetically inherited disorder and is the most common known cause of autism spectrum disorders. FXS is caused by the silencing of the fragile X mental retardation 1 (FMR1) gene, which encodes for the fragile X mental retardation protein (FMRP). Here, we discovered a reduction in the number of primary cilia and the Sonic hedgehog (Shh) signaling in cerebellar Bergmann glia of Fmr1 KO mice. We further found reduced granule neuron precursor (GNP) proliferation and thickness of the external germinal layer (EGL) in Fmr1 KO mice, implicating that primary ciliary deficits in Bergmann glia may contribute to cerebellar developmental phenotypes in FXS, as Shh signaling through primary cilia in Bergmann glia is known to mediate proper GNP proliferation in the EGL. Taken together, our study demonstrates that FMRP loss leads to primary ciliary deficits in cerebellar Bergmann glia which may contribute to cerebellar deficits in FXS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST. Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol. 2009;111:39–53.

    Article  CAS  Google Scholar 

  2. Wheway G, Nazlamova L, Hancock JT. Signaling through the primary cilium. Front Cell Dev Biol. 2018;6:8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet. 2006;7:125–48.

    Article  CAS  PubMed  Google Scholar 

  4. Lee JH, Gleeson JG. The role of primary cilia in neuronal function. Neurobiol Dis. 2010;38:167–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ware SM, Aygun MG, Hildebrandt F. Spectrum of clinical diseases caused by disorders of primary cilia. Proc Am Thorac Soc. 2011;8:444–50.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature. 2003;426:83–7.

    Article  CAS  PubMed  Google Scholar 

  7. Chizhikov VV, Davenport J, Zhang Q, Shih EK, Cabello OA, Fuchs JL, Yoder BK, Millen KJ. Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J Neurosci. 2007;27:9780–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spassky N, Han YG, Aguilar A, Strehl L, Besse L, Laclef C, Ros MR, Garcia-Verdugo JM, Alvarez-Buylla A. Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev Biol. 2008;317:246–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Di Pietro C, Marazziti D, La Sala G, Abbaszadeh Z, Golini E, Matteoni R, Tocchini-Valentini GP. Primary cilia in the murine cerebellum and in mutant models of medulloblastoma. Cell Mol Neurobiol. 2017;37:145–54.

    Article  PubMed  CAS  Google Scholar 

  10. Breunig JJ, Sarkisian MR, Arellano JI, Morozov YM, Ayoub AE, Sojitra S, Wang B, Flavell RA, Rakic P, Town T. Primary cilia regulate hippocampal neurogenesis by mediating Sonic hedgehog signaling. Proc Natl Acad Sci U S A. 2008;105:13127–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han YG, Spassky N, Romaguera-Ros M, Garcia-Verdugo JM, Aguilar A, Schneider-Maunoury S, Alvarez-Buylla A. Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci. 2008;11:277–84.

    Article  CAS  PubMed  Google Scholar 

  12. Chang CH, Zanini M, Shirvani H, Cheng JS, Yu H, Feng CH, Mercier AL, Hung SY, Forget A, Wang CH, et al. Atoh1 controls primary cilia formation to allow for SHH-triggered granule neuron progenitor proliferation. Dev Cell. 2019;48:184-199.e185.

    Article  CAS  PubMed  Google Scholar 

  13. Flora A, Klisch TJ, Schuster G, Zoghbi HY. Deletion of Atoh1 disrupts Sonic hedgehog signaling in the developing cerebellum and prevents medulloblastoma. Science. 2009;326:1424–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng FY, Fleming JT, Chiang C. Bergmann glial Sonic hedgehog signaling activity is required for proper cerebellar cortical expansion and architecture. Dev Biol. 2018;440:152–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marazziti D, Di Pietro C, Golini E, Mandillo S, La Sala G, Matteoni R, Tocchini-Valentini GP. Precocious cerebellum development and improved motor functions in mice lacking the astrocyte cilium-, patched 1-associated Gpr37l1 receptor. Proc Natl Acad Sci U S A. 2013;110:16486–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu H, Yang Y, Tang X, Zhao M, Liang F, Xu P, Hou B, Xing Y, Bao X, Fan X. Bergmann glia function in granule cell migration during cerebellum development. Mol Neurobiol. 2013;47:833–44.

    Article  CAS  PubMed  Google Scholar 

  17. Huang CC, Sugino K, Shima Y, Guo C, Bai S, Mensh BD, Nelson SB, Hantman AW. Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells. Elife. 2013;2:e00400.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lackey EP, Heck DH, Sillitoe RV. Recent advances in understanding the mechanisms of cerebellar granule cell development and function and their contribution to behavior [version 1; peer review: 3 approved]. F1000Research. 2018;7(F1000 Faculty Rev):1142.

  19. Manzini MC, Ward MS, Zhang Q, Lieberman MD, Mason CA. The stop signal revised: immature cerebellar granule neurons in the external germinal layer arrest pontine mossy fiber growth. J Neurosci. 2006;26:6040–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Watanabe M, Kano M. Climbing fiber synapse elimination in cerebellar Purkinje cells. Eur J Neurosci. 2011;34:1697–710.

    Article  PubMed  Google Scholar 

  21. Giovannucci A, Badura A, Deverett B, Najafi F, Pereira TD, Gao Z, Ozden I, Kloth AD, Pnevmatikakis E, Paninski L, et al. Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning. Nat Neurosci. 2017;20:727–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Antar LN, Afroz R, Dictenberg JB, Carroll RC, Bassell GJ. Metabotropic glutamate receptor activation regulates fragile x mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. J Neurosci. 2004;24:2648–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bakker CE, de Diego Otero Y, Bontekoe C, Raghoe P, Luteijn T, Hoogeveen AT, Oostra BA, Willemsen R. Immunocytochemical and biochemical characterization of FMRP, FXR1P, and FXR2P in the mouse. Exp Cell Res. 2000;258:162–70.

    Article  CAS  PubMed  Google Scholar 

  24. Cook D, Sanchez-Carbente MeR, Lachance C, Radzioch D, Tremblay S, Khandjian EW, DesGroseillers L, Murai KK. Fragile X related protein 1 clusters with ribosomes and messenger RNAs at a subset of dendritic spines in the mouse hippocampus. PLoS One. 2011;6:e26120.

  25. Feng Y, Gutekunst CA, Eberhart DE, Yi H, Warren ST, Hersch SM. Fragile X mental retardation protein: nucleocytoplasmic shuttling and association with somatodendritic ribosomes. J Neurosci. 1997;17:1539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laggerbauer B, Ostareck D, Keidel EM, Ostareck-Lederer A, Fischer U. Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum Mol Genet. 2001;10:329–38.

    Article  CAS  PubMed  Google Scholar 

  27. Bardoni B, Davidovic L, Bensaid M, Khandjian EW. The fragile X syndrome: exploring its molecular basis and seeking a treatment. Expert Rev Mol Med. 2006;8:1–16.

    Article  PubMed  Google Scholar 

  28. Greco CM, Navarro CS, Hunsaker MR, Maezawa I, Shuler JF, Tassone F, Delany M, Au JW, Berman RF, Jin LW, et al. Neuropathologic features in the hippocampus and cerebellum of three older men with fragile X syndrome. Mol Autism. 2011;2:2.

    Article  PubMed  PubMed Central  Google Scholar 

  29. O’Donnell WT, Warren ST. A decade of molecular studies of fragile X syndrome. Annu Rev Neurosci. 2002;25:315–38.

    Article  CAS  PubMed  Google Scholar 

  30. Roy S, Zhao Y, Allensworth M, Farook MF, LeDoux MS, Reiter LT, Heck DH. Comprehensive motor testing in Fmr1-KO mice exposes temporal defects in oromotor coordination. Behav Neurosci. 2011;125:962–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Koekkoek SK, Yamaguchi K, Milojkovic BA, Dortland BR, Ruigrok TJ, Maex R, De Graaf W, Smit AE, VanderWerf F, Bakker CE, et al. Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in Fragile X syndrome. Neuron. 2005;47:339–52.

    Article  CAS  PubMed  Google Scholar 

  32. Aksoy A, Karaguzel G, Akbulut U, Turk A. Two sisters with Bardet-Biedl syndrome: brain abnormalities and unusual facial findings. Turk J Pediatr. 2011;53:460–3.

    PubMed  Google Scholar 

  33. Parisi MA. The molecular genetics of Joubert syndrome and related ciliopathies: the challenges of genetic and phenotypic heterogeneity. Transl Sci Rare Dis. 2019;4:25–49.

    PubMed  PubMed Central  Google Scholar 

  34. Valente EM, Rosti RO, Gibbs E, Gleeson JG. Primary cilia in neurodevelopmental disorders. Nat Rev Neurol. 2014;10:27–36.

    Article  PubMed  Google Scholar 

  35. Waters AM, Beales PL. Ciliopathies: an expanding disease spectrum. Pediatr Nephrol. 2011;26:1039–56.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee B, Panda S, Lee HY. Primary ciliary deficits in the dentate gyrus of fragile X syndrome. Stem Cell Rep. 2020;15:454–66.

    Article  CAS  Google Scholar 

  37. Reeber SL, White JJ, George-Jones NA, Sillitoe RV. Architecture and development of olivocerebellar circuit topography. Front Neural Circuits. 2012;6:115.

    PubMed  Google Scholar 

  38. White JJ, Sillitoe RV. Development of the cerebellum: from gene expression patterns to circuit maps. Wiley Interdiscip Rev Dev Biol. 2013;2:149–64.

    Article  CAS  PubMed  Google Scholar 

  39. Saab AS, Neumeyer A, Jahn HM, Cupido A, Simek AA, Boele HJ, Scheller A, Le Meur K, Gotz M, Monyer H, et al. Bergmann glial AMPA receptors are required for fine motor coordination. Science. 2012;337:749–53.

    Article  CAS  PubMed  Google Scholar 

  40. Yamada K, Fukaya M, Shibata T, Kurihara H, Tanaka K, Inoue Y, Watanabe M. Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells. J Comp Neurol. 2000;418:106–20.

    Article  CAS  PubMed  Google Scholar 

  41. Wang F, Xu Q, Wang W, Takano T, Nedergaard M. Bergmann glia modulate cerebellar Purkinje cell bistability via Ca2+-dependent K+ uptake. Proc Natl Acad Sci. 2012;109:7911–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Farmer WT, Abrahamsson T, Chierzi S, Lui C, Zaelzer C, Jones EV, Bally BP, Chen GG, Theroux JF, Peng J, et al. Neurons diversify astrocytes in the adult brain through Sonic hedgehog signaling. Science. 2016;351:849–54.

    Article  CAS  PubMed  Google Scholar 

  43. Corrales JD, Rocco GL, Blaess S, Guo Q, Joyner AL. Spatial pattern of Sonic hedgehog signaling through Gli genes during cerebellum development. Development. 2004;131:5581–90.

    Article  CAS  PubMed  Google Scholar 

  44. Galas L, Benard M, Lebon A, Komuro Y, Schapman D, Vaudry H, Vaudry D, Komuro H. Postnatal migration of cerebellar interneurons. Brain Sci. 2017;7(6):62.

    Article  PubMed Central  CAS  Google Scholar 

  45. Wallace VA. Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol. 1999;9:445–8.

    Article  CAS  PubMed  Google Scholar 

  46. Becker EB, Stoodley CJ. Autism spectrum disorder and the cerebellum. Int Rev Neurobiol. 2013;113:1–34.

    Article  CAS  PubMed  Google Scholar 

  47. Reiss AL, Patel S, Kumar AJ, Freund L. Preliminary communication: neuroanatomical variations of the posterior fossa in men with the fragile X (Martin-Bell) syndrome. Am J Med Genet. 1988;31:407–14.

    Article  CAS  PubMed  Google Scholar 

  48. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. NeuroImage. 2012;59:1560–70.

    Article  PubMed  Google Scholar 

  50. Bellamy TC. Interactions between Purkinje neurones and Bergmann glia. Cerebellum. 2006;5:116–26.

    Article  PubMed  Google Scholar 

  51. Lippman JJ, Lordkipanidze T, Buell ME, Yoon SO, Dunaevsky A. Morphogenesis and regulation of Bergmann glial processes during Purkinje cell dendritic spine ensheathment and synaptogenesis. Glia. 2008;56:1463–77.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lee HY, Ge WP, Huang W, He Y, Wang GX, Rowson-Baldwin A, Smith SJ, Jan YN, Jan LY. Bidirectional regulation of dendritic voltage-gated potassium channels by the fragile X mental retardation protein. Neuron. 2011;72:630–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Exing Wang for the technical support on imaging and Daisy Brockhouse for assisting with the analysis.

Funding

This work was supported by the National Institute of Mental Health (R01MH125979), the National Institute on Aging (R21AG072423), the UT Rising STARs award, and the Simons Foundation Autism Research Initiative (SFARI) pilot award (#574967).

Author information

Authors and Affiliations

Authors

Contributions

B.L. and L.B. conceived the study, performed the experiments, and wrote the manuscript. H.Y.L. supervised the whole project and wrote the manuscript.

Corresponding author

Correspondence to Hye Young Lee.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4.45 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B., Beuhler, L. & Lee, H.Y. The Primary Ciliary Deficits in Cerebellar Bergmann Glia of the Mouse Model of Fragile X Syndrome. Cerebellum 21, 801–813 (2022). https://doi.org/10.1007/s12311-022-01382-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-022-01382-8

Keywords

Navigation