Location: Berg/Clarke Lab 2.532U.4



Michael J. Wedemeyer, Ph.D.

Postdoctoral Fellow

Personal Statement:

I am a postdoctoral researcher working under the guidance of Dr. Bill Clarke and Dr. Kelly Berg at UTHSCSA. Our research is focused on understanding how drugs interact with opioid receptors with the goal of developing pain-relieving drugs without the addictive side effects of many opioids.


Ph.D., Biochemistry
Medical College of Wisconsin

Bachelor's Degree, Biomolecular Engineering
Milwaukee School of Engineering


• Pharmacology • G Protein-Coupled Receptor
• Opioids

I am very interested in a family of proteins, known as G protein-coupled receptors (GPCRs), that reside on the surface of cells. These GPCRs allow a cell to sense chemical signals in the external environment and respond accordingly. In the human body, GPCRs regulate many important functions and systems such as the immune system, the nervous system, and cell homeostasis, so it is unsurprising that over a third of FDA approved drugs target GPCRs. However, we are just starting to understand the complexity of these receptors and the mechanisms by which they affect cell responses. This gap in knowledge opens the door for unwanted side effects in drugs that target GPCRs.

Currently, I am studying drugs that either activate or block opioid GPCRs. My pharmacological training in the T32 program under Dr. William Clarke and Dr. Kelly Berg will add to my experience using computational molecular modeling to gain a more complete understanding of how drugs interact with opioid GPCRs and affect the human body. The opioid epidemic is the most infamous example of abused drugs that target GPCRs, and this research has the potential to develop pain-relieving drugs without the addictive side effects of many opioids.

Awards & Accomplishments

NIH T32 Postdoctoral Fellowship in Addiction Research, UT Health San Antonio –  2020


Wedemeyer, M. J., Mueller, B. K., Bender, B. J., Meiler, J., & Volkman, B. F. (2020). Comparative modeling and docking of chemokine-receptor interactions with Rosetta. Biochemical and biophysical research communications, 528(2), 389–397.

Wedemeyer, M. J., Mahn, S. A., Getschman, A. E., Crawford, K. S., Peterson, F. C., Marchese, A., McCorvy, J. D., & Volkman, B. F. (2020). The chemokine X-factor: Structure-function analysis of the CXC motif at CXCR4 and ACKR3. The Journal of biological chemistry, 295(40), 13927–13939.

Stealey, S., Guo, X., Majewski, R., Dyble, A., Lehman, K., Wedemeyer, M., Steeber, D. A., Kaltchev, M. G., Chen, J., & Zhang, W. (2020). Calcium-oligochitosan-pectin microcarrier for colonic drug delivery. Pharmaceutical development and technology, 25(2), 260–265.

Wedemeyer, M. J., Mueller, B. K., Bender, B. J., Meiler, J., & Volkman, B. F. (2019). Modeling the complete chemokine-receptor interaction. Methods in cell biology, 149, 289–314.

Holl, K., He, H., Wedemeyer, M., Clopton, L., Wert, S., Meckes, J. K., Cheng, R., Kastner, A., Palmer, A. A., Redei, E. E., & Solberg Woods, L. C. (2018). Heterogeneous stock rats: a model to study the genetics of despair-like behavior in adolescence. Genes, brain, and behavior, 17(2), 139–148.

Zhang, W., Bissen, M. J., Savela, E. S., Clausen, J. N., Fredricks, S. J., Guo, X., Paquin, Z. R., Dohn, R. P., Pavelich, I. J., Polovchak, A. L., Wedemeyer, M. J., Shilling, B. E., Dufner, E. N., O’Donnell, A. C., Rubio, G., Readnour, L. R., Brown, T. F., Lee, J. C., Kaltchev, M. G., Chen, J., … Tritt, C. S. (2016). Design of artificial red blood cells using polymeric hydrogel microcapsules: hydrogel stability improvement and polymer selection. The International journal of artificial organs, 39(10), 518–523.